Measurement and Prediction of Thermochemical Properties. Improved Benson-Type Increments for the Estimation of Enthalpies of Vaporization and Standard Enthalpies of Formation of Aliphatic Alcohols

Gennady N. Roganov, Pavel N. Pisarev, and Vladimir N. Emel'yanenko

Department of Chemistry and Technology, Mogilev State University of Food, Belarus

Sergey P. Verevkin*

Department of Physical Chemistry, University of Rostock, Hermannstrasse 14, D-18051 Rostock, Germany

This work has been undertaken to revise the group-additivity values necessary for predicting standard enthalpies of formation and vaporization enthalpies of aliphatic alcohols by means of Benson's group-additivity scheme at the reference temperature T = 298.15 K. The database on the molar enthalpies of vaporization has been extended with measurements on some linear alcohols (1-hexanol, 1-heptanol, and 1-nonanol) and branched alkanols (2-hexanol, 5-methyl-3-hexanol, 2-methyl-2-hexanol, 3-ethyl-3-pentanol, 2-ethyl-1-hexanol, 2-methyl-2-heptanol, 3,5,5-trimethyl-1-hexanol, and 2,6-dimethyl-4-heptanol) using the transpiration method. The data were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. A simultaneous compilation and evaluation of data for enthalpies in the liquid and in the gaseous phase together with vaporization enthalpies have been performed, thereby giving a basis for the validation of experimental results. The group-additivity parameters useful in the application of the Benson correlation are presented in tabular form, together with a description of their evaluation.

Introduction

Industry needs to use new or modified chemical processes that have high yields and, hence, generate only small quantities of hazardous waste streams. An integral part of such changes is a better understanding of the thermochemical behavior of the species involved. At this time, reliable quantitative information on the thermochemical properties of the organic compounds, especially on branched species, is quite limited. Ab initio calculations are currently being performed to obtain thermodynamic values, but it will be a considerable time before reliable results are available for many relevant compounds. Meanwhile, it is necessary to develop empirical procedures that will give approximate yet reasonable values for their thermochemical properties such as enthalpies of vaporization, $\Delta_1^g H_m$, and enthalpies of formation, $\Delta_f H_m^{\circ}$. The most successful empirical method for estimating these properties is based on the group-additivity methodology (76-Bens, 76-Kab/ Rog). The use of group additivity is straightforward and easy. It does not require the computing resource that ab initio calculations do. Another advantage of using GA is the convenience of predicting thermodynamic properties for large molecules. This method serves as a valuable tool for many scientists and engineers whose work involves the thermodynamic characterization of elementary and overall reaction processes.

Experimental enthalpies of vaporization and of formation of aliphatic alcohols can be found in the literature (86-Ped/ Nay). However, the available results on these properties

* To whom correspondence should be addressed. E-mail: sergey.verevkin@uni-rostock.de. Fax: +49 381 498 6502. Phone: +49 381 498 6508. are not always consistent, as they should be when used for comparison with predictive calculations. Accurate and reliable experimental data with small uncertainties are needed to establish or to refine empirical estimation schemes. It is recognized that there is a lack of thermochemical information for branched molecules in each class of organic compounds. Because of the paucity of experimental data, the number of additive parameters, such as a tertiary $C-(G)(C)_2(H)$ or a quaternary $C-(G)(C)_3$ carbon atom attached to a functional group (G), have been evaluated as a rule only from the data for one or two branched compounds. These parameters have to be checked for their validity. In this context, systematic investigations on branched esters (96-Ver/Bec, 95a-Rak/Ver), amines (97a-Ver), nitro compounds (97b-Ver), nitriles (94-Rak/Ver), alcohols (98-Ver, 01a-Kul/Ver, and 01b-Kul/Ver), ketones (95-Nol/Ver), imines (97-Ver/Mor), fluoroalkanes (97-Sch/ Ver), carboxylic acids (00-Ver), and alkyl ethers, acetals, ketals, and ortho esters (95b-Rak/Ver, 02-Ver) have been performed in the last decade. This paper extends our previous studies on the systematic evaluation of the groupadditivity contributions for the broad range of aliphatic alcohols with emphasis on branched species. Although various group-additivity methods (80-Duc/Gru, 99-Rog/Bar) give excellent correlations between observed and calculated $\Delta_1^{g}H_{m}(298.15 \text{ K})$ values for linear homologues, deviation may arise, especially for the branched members of the series. Because the distribution of the bulky molecules in the liquid and their intermolecular interactions seem to be unique for branched molecules, for the reliable predictions of the vaporization enthalpies of such species a more detailed study is required. A few systematic investigations of vaporization enthalpies of the long-chained branched

aliphatic alcohols have been reported in the literature (99-NGu/Ber, 98-Ver, 01a-Kul/Ver). We report here a systematic experimental determination of the vaporization enthalpies of a series of C6 to C9 branched alcohols: 2-hexanol, 5-methyl-3-hexanol, 2-methyl-2-hexanol, 3-ethyl-3-pentanol, 2-ethyl-1-hexanol, 2-methyl-2-heptanol, 3,5,5-trimethyl-1-hexanol, and 2,6-dimethyl-4-heptanol. We tested our experimental and calculation procedures with measurements on 1-hexanol, for which the temperature dependence of vapor pressure is reliable (85-Gie/Rog). Two linear alcohols-1-heptanol and 1-nonanol-were additionally investigated in the temperature range close to the reference temperature of 298.15 K. The derived new values of $\Delta_1^g H_m$ (298.15 K) together with the values already available from the literature were used to develop a groupadditivity scheme for the prediction of the enthalpies of vaporization of the aliphatic alcohols.

The thermochemistry of aliphatic alcohols in the condensed state is well established. Reliable values of $\Delta_f H_m^{\circ}$ (l) are mostly available from Pedley (86-Ped/Nay). Additionally, we have reviewed literature data on enthalpies of vaporization and enthalpies of formation of alcohols and especially experimental results published in the hardly available sources from the former USSR. To obtain $\Delta_f H_m^{\circ}$ (g), we have used selected values of $\Delta_f^{\rm g} H_{\rm m}$ in this study and known values for the enthalpies of formation in the liquid state $\Delta_f H_m^{\circ}$ (l) to derive $\Delta_f H_m^{\circ}$ (g). Then the group-contribution method was developed to predict values of the enthalpies of formation of alcohols in both the gaseous and liquid phases as well as the enthalpies of vaporization.

Experimental Section

Materials. Pure samples of alcohols were of commercial origin. Specimens for the measurements were purified by repeated distillation under reduced pressure. To avoid traces of water, the purified liquid samples were dried over molecular sieves and distilled once more before the experiments. The degree of purity was determined by GC. No impurities (greater than mass fraction 10^{-4}) could be detected. We used the following equipment: GC (Carlo Erba Fraktometer Vega Series GC 6000), Hewlett-Packard Integrator 3390A, nitrogen flow of 0.333 cm³·s⁻¹, and an SE-30 capillary column of length 25 m. The standard temperature program of the GC was T = 303 K for 5 min followed by a heating rate of 0.167 K·s⁻¹ to T = 523 K.

Measurements of the Enthalpies of Vaporization by the Transpiration Method. Vapor pressures and enthalpies of vaporization of alkanols were determined by using the method of transpiration in a saturated N₂ stream (00-Ver, 01b-Ver/Kul) and by applying the Clausius-Clapeyron equation. About 0.5 g of the sample was mixed with glass beads and placed in a thermostated U-shaped tube having a length of 20 cm and a diameter of 0.5 cm. Glass beads with diameter of 1 mm provide a surface that is sufficient enough for vapor-liquid equilibration. At constant temperature $(\pm 0.1 \text{ K})$, a nitrogen stream was passed through the U-tube, and the transported amount of gaseous material was collected in a cooling trap. The flow rate of the nitrogen stream was measured using a soap bubble flow meter and optimized to reach the saturation equilibrium of the transporting gas at each temperature under study. On one hand, the flow rate of the nitrogen stream in the saturation tube should be not too slow in order to avoid the transport of material from the U-tube due to diffusion. On the other hand, the flow rate should be not too fast in order to reach the saturation of the nitrogen stream with

a compound. We tested our apparatus at different flow rates of the carrier gas in order to check the lower boundary of the flow below which the contribution of the vapor condensed in the trap by diffusion becomes comparable to the transpired contribution. In our apparatus, the contribution due to diffusion was negligible at a flow rate of up to 0.45 dm³·h⁻¹. The upper limit for our apparatus where the speed of nitrogen could already disturb the equilibration was at a flow rate of 9.0 $dm^3 \cdot h^{-1}$. Thus, we carried out the experiments in the flow rate interval of (2.5 to 4.8)dm³·h⁻¹, which has ensured that the transporting gas was in saturated equilibrium with the coexisting liquid phase in the saturation tube. The amount of condensed substance was determined by GC analysis using an external standard (hydrocarbon n-C $_n$ H $_{2n+2}$). The saturation vapor pressure p_i^{sat} at each temperature T_i was calculated from the amount of product collected within a definite period of time. Assuming that Dalton law of partial pressures applied to the nitrogen stream saturated with substance i of interest is valid, values of p_i^{sat} were calculated

$$p_i^{\text{sat}} = \frac{m_i R T_{\text{a}}}{V M_i} \qquad V = V_{\text{N}_2} + V_i \qquad (V_{\text{N}_2} \gg V_i) \quad (1)$$

where $R = 8.31451 \text{ J}\cdot\text{K}^{-1}\cdot\text{mol}^{-1}$, m_i is the mass of transported compound, M_i is the molar mass of the compound, and V_i is its volume contribution to the gaseous phase. V_{N_2} is the volume of transporting gas, and T_a is the temperature of the soap bubble meter. The volume of transporting gas V_{N_2} was determined from the flow rate and time measurements. Data of p_i^{sat} have been obtained as a function of temperature and were fitted using following equation (01b-Ver/Kul)

$$R \ln p_i^{\text{sat}} = a + \frac{b}{T} + \Delta_1^{\text{g}} C_p \ln\left(\frac{T}{T_0}\right)$$
(2)

where a and b are adjustable parameters and $\Delta_{\rm f}^{\rm g}C_p$ is the difference in the molar heat capacities of the gaseous and liquid phases, respectively. T_0 appearing in eq 2 is an arbitrarily chosen reference temperature (which has been chosen to be 298.15 K). Consequently, from eq 2 the expression for the vaporization enthalpy at temperature T is derived:

$$\Delta_{\rm l}^{\rm g} H_{\rm m}(T) = -b + \Delta_{\rm l}^{\rm g} C_p T \tag{3}$$

Values of $\Delta_l^g C_p = C_p^g - C_p^l$ have been derived from the experimental isobaric molar heat capacities of liquids, C_p^l , alcohols, and from values of the isobaric molar heat capacities C_p^g of gaseous alcohols calculated according to a procedure developed by Domalski and Hearing (93-Dom/Hea). Experimental vapor pressures of alkanols together with their enthalpies of vaporization $\Delta_l^g H_m$ are presented in Table 1.

Results and Discussion

Database of Aliphatic Alcohols. The experimental data for the evaluation of the group-additivity values (GAVs) was assembled from several sources. A critical survey of the thermodynamic properties of alcohols up to 1973 was reported by Wilhoit and Zwolinski (73-Wil/Zwo). Majer and Svoboda (85a-Maj/Svo) reviewed their data and literature data on enthalpies of vaporization available until 1984. Recently, Roganov and Baranov (99-Rog/Bar) gathered literature data on the thermodynamic properties of alcohols and especially experimental results published in

Table 1. Vapor Pressures p and $\Delta_1^{\circ}\Delta_f H_m^{\circ}$ (1) Obtain	ied by the Transpiration Method
--	---------------------------------

	-	T7/NT)	- 1		A 977	<i>m</i>		T7/NT)			A 977
		$V(N_2)$	p	$p_{\mathrm{exptl}} - p_{\mathrm{calcd}}$	$\Delta_{l}^{b}H_{m}$			$V(N_2)$	p	$p_{\mathrm{exptl}} - p_{\mathrm{calcd}}$	$\Delta_{l}^{b}H_{m}$
\mathbf{K}^{a}	mg^b	$dm^{3 c}$	Pa^d	Pa	$kJ \cdot mol^{-1}$	\mathbf{K}^{a}	mg^b	$dm^{3 c}$	\mathbf{Pa}^d	Pa	$kJ\cdot mol^{-1}$
				1-Hexanol: Λ	$^{3}H_{m}(298.15 \text{ K})$	(61.7)	1 ± 0.26 k	J·mol ⁻¹			
			$\ln(p)$	p/Pa) = (331.2/R)	$-(87\ 052.0/$	R(T/K)) -	(85.0/R)ln	((T/K)/29	8.15)		
265.0	1.81	10.070	4.68	0.1	64.53	313.2	4.52	0.295	370.07	7.8	60.43
268.2	2.22	8.499	6.64	0.2	64.26	318.2	4.84	0.221	526.95	5.9	60.01
273.4	1.70	3.899	10.85	-0.3	63.82	318.2	5.58	0.255	527.77	6.7	60.01
278.2	1.39	1.957	17.48	-0.6	63.41	323.2	3.99	0.129	748.08	8.8	59.58
283.2	1.14	0.986	28.16	-1.2	62.98	323.2	8.50	0.287	714.41	-24.9	59.58
288.1	1.54	0.821	45.36	-0.9	62.57	328.1	7.33	0.171	1029.71	1.3	59.17
293.2	1.99	0.653	74.04	1.4	62.13	328.2	7.70	0.183	1012.21	-23.0	59.16
293.3	1.84	0.614	72.40	-0.9	62.13 61.71	333.1 222 0	8.92 11.57	0.150	1432.75	10.1	58.74 58.79
298.2 208.3	2.19	0.082	110.97	4.7	61.71 61.70	333.Z 338.9	11.07	0.191	1407.84	20.1	00.70 58 31
202.0	1.20	0.495	167.00	-0.5	61.28	2/2 2	16.50	0.155	2620.21	-5.0	57.88
303.2	2.00	0.271	166 13	-1.4	61.28	348.2	20.70	0.131	2055.51	-59.6	57.46
303.2	9.20	0.470	167 79	-1.1	61.28	353.2	26.09	0.135	1639 36	-37.9	57.40
308.2	4.33	0.550	252.40	41	60.86	357.2	20.03	0.100	5785 11	-25.0	56.69
308.3	3 59	0.343	252.40 252.75	2.6	60.85	358.2	28.40	0.000	6131 47	34	56 61
310.4	4.57	0.366	300.55	6.8	60.67	363.2	26.06	0.080	7874.65	-79.0	56.18
313.1	2.89	0.193	360.88	1.3	60.44	00012	20.00	0.000	1011100	1010	00110
				1 TT / 1 A		7) (00.0		T 1_1			
			$\ln(n)$	$(248 \ 8/R)$	$_{\rm l}^{\circ}H_{\rm m}(298.15 \text{ f})$	X = (66.9) R(T/K) =	(4 ± 0.38) F (95.3/R)ln	((T/K)/90	8 15)		
283 /	0 720	2 010	7 68	$(340.0/\pi)$ = 0.91	68 35	301.9	0.935	0 / 69	0.15) 19.15	-0.50	66 65
286.2	0.690	1.010	10.49	0.01	68.08	303.2	1 179	0.405	50.96	-0.23	66 46
289.2	0.683	1 039	14 05	-0.04	67 79	304.2	0.963	0.369	55 61	-0.20	66.36
292.2	0.000 0.784	0.871	19.19	0.38	67.51	307.2	0.951	0.268	75 51	3 42	66.08
292.2	1.040	1.173	18.92	0.10	67.51	308.2	1.453	0.410	75.39	-3.00	65.98
293.2	0.657	0.655	21.31	0.63	67.41	310.2	0.882	0.201	93.30	0.77	65.79
293.7	0.703	0.670	22.38	0.69	67.36	313.2	1.722	0.302	121.41	3.32	65.51
295.2	1.215	1.005	25.75	0.81	67.22	313.2	1.769	0.328	114.71	-3.38	65.51
295.2	1.158	1.005	24.55	-0.39	67.22	316.2	1.688	0.235	153.05	3.20	65.22
296.7	0.679	0.503	28.80	0.15	67.08	318.2	1.978	0.246	171.04	-4.07	65.03
298.2	0.852	0.573	31.57	-1.27	66.94	319.2	1.776	0.201	187.81	-1.31	64.93
298.3	1.005	0.670	31.94	-1.19	66.93	323.2	1.995	0.164	258.80	3.00	64.55
				1-Nonanol: A	³ <i>H</i> (298 15 K	(74.6)	$7 \pm 0.30)$ k	J·mol ⁻¹			
			$\ln(p/$	$P_{a} = (371.9/R) -$	-(107,469.0)	R(T/K)) -	(110.0/R)	n((T/K)/2)	98.15)		
284.3	0.81	16.200	0.86	-0.04	76.20	323.3	2.63	1.145	39.15	-0.48	71.91
288.2	1.02	12.833	1.36	-0.03	75.77	326.2	2.09	0.702	50.93	0.69	71.59
292.2	1.08	8.455	2.20	0.06	75.33	326.3	2.90	1.018	48.58	-2.07	71.58
296.2	1.16	5.874	3.38	0.13	74.89	329.2	1.37	0.364	64.46	0.59	71.26
300.2	1.32	4.450	5.09	0.22	74.45	329.3	3.51	0.933	64.23	-0.15	71.25
304.2	1.24	3.010	7.05	-0.15	74.01	332.2	1.63	0.340	82.36	1.59	70.93
308.2	1.20	1.909	10.73	0.22	73.57	332.3	2.16	0.465	79.23	-2.17	70.92
308.2	1.18	1.957	10.36	-0.16	73.57	335.4	2.46	0.413	101.70	-1.43	70.58
311.3	1.43	1.697	14.34	0.36	73.23	338.3	2.62	0.362	123.68	-4.39	70.26
313.3	1.39	1.405	16.98	0.23	73.01	341.2	2.89	0.310	159.19	0.90	69.94
314.3	1.75	1.612	18.50	0.19	72.90	344.3	3.00	0.258	198.11	0.56	69.60
317.2	1.85	1.357	23.25	-0.38	72.58	347.3	3.64	0.258	240.57	-3.03	69.27
318.2	1.50	1.003	25.66	-0.21	72.47	350.3	4.66	0.258	307.62	8.59	68.94
320.3 393 9	2.18	1.230 0.702	30.27	-0.56	72.24	303.4	0.08	0.258	375.05	1.11	68.60
020.2	1.00	0.702	55.01	0.07	11.52						
				2-Hexanol; Δ_{l}^{l}	$^{5}H_{\rm m}(298.15~{\rm K})$	(57.0) = (57.0)	4 ± 0.22) k	J•mol ⁻¹			
0545	0.000	0.1.40	$\ln(p)$	(Pa) = (338.9/R)	- (86 976.1/	$\mathcal{L}(T/\mathbf{K})) =$	(100.4/R)li	n((T/K)/2)	98.15)	4.0	
274.5	3.332	2.142	38.84	0.6	59.42	293.2	9.791	1.237	191.97	-4.3	57.54
276.3	4.055	2.213	45.52	0.2	59.24	290.5	7.522	1.176	155.38	-2.1	57.81
270.0	4.117	2.400	42.09	0.7	09.3Z	293.4	0.110	0.960	204.78	0.3 5.0	07.0Z
270.0	3.011 4.767	1.029	40.00	0.7	59.22	294.4	5.00Z	0.422	210.12	-3.9	07.42 57.94
210.0 279 5	3 180	2.100 1 //Q	50.12	-14	59.04 58.09	290.2	3 3 3 9 0	0.200	240.22	-65	57 19
281 P	3 900	1 390	72.53	10	58 74	296.5	6.321 6.321	0.502	255.02	0.0	57.12
282.2	3.962	1 220	79.00	1.5	58 65	300.4	4 269	0.302	342.10	-2.3	56.82
282.5	3.700	1 146	79.09	-0.5	58.62	299.5	6 485	0.480	326 66	5.0	56 91
284.3	3,931	1.008	95.29	2.1	58.44	302.5	6.469	0.384	407.00	3.8	56.61
285.4	6.284	1.475	103.96	1.5	58.33	303.4	4.196	0.241	419.95	-11.1	56.52
285.5	3.822	0.935	99.77	-3.6	58.32	305.5	5.389	0.252	516.26	13.5	56.31
288.4	3.965	0.754	127.97	-4.3	58.03	306.4	4.004	0.181	533.95	-2.6	56.22
287.5	4.272	0.864	120.42	-2.2	58.12	307.6	5.968	0.240	600.07	15.3	56.10
292.1	3.807	0.516	178.95	-0.6	57.65	309.4	5.155	0.181	687.06	22.8	55.92
291.4	3.770	0.543	168.56	-1.0	57.72						

Table 1	(Conti	nued)									
Т	т	$V(N_2)$	р	$p_{\mathrm{exptl}} - p_{\mathrm{calcd}}$	$\Delta^{ m g}_{ m l} H_{ m m}$	T	m	$V(N_2)$	р	$p_{\mathrm{exptl}} - p_{\mathrm{calcd}}$	$\Delta^{ m g}_{ m l} H_{ m m}$
\mathbf{K}^{a}	$\overline{\mathrm{mg}^{b}}$	$dm^{3 c}$	\mathbf{Pa}^d	Pa	kJ•mol ⁻¹	Ka	mg^b	$dm^{3 c}$	\mathbf{Pa}^d	Pa	$kJ\cdot mol^{-1}$
			1 (5-Me-hexanol-3	B; $\Delta_{\rm l}^{\rm g} H_{\rm m}(298.1)$	(5 K) = (5 K)	9.82 ± 0.3	1) kJ·mol	-1		
075 0	1.00	1 500	In()	p/Pa) = (350.0/R)	$) = (91\ 095.0)$	R(T/K)) =	(104.9/K)	$\ln((1/K)/2)$	(102.00	5.0	60.00
275.2	1.98	1.093	27.15	0.4	62.23	296.2	4.13	0.478	183.80	0.9 2.6	60.03 50.71
210.2	2.20	1.020	00.44 47.69	0.0	61.60	299.2	4.01 5.29	0.420	230.70	0.0 _1.0	59.71
201.2	2.00 9.39	0.797	47.02 62.36	-0.5	61.00	302.2	1.58	0.398	267.03	-1.0	59.40
287.2	2.52 2.59	0.690	80.14	-2.2	60.97	308.2	5.74	0.200	458 24	2.9	58 77
290.2	2.86	0.584	104.63	-2.6	60.66	311.2	7.11	0.266	567.51	-0.2	58.46
293.2	3.38	0.531	135.41	-3.2	60.34						
				2-Me-hexanol-2	$2; \Delta_{\rm l}^{\rm g} H_{\rm m}(298.1)$	15 K = (5	8.57 ± 0.3	85) kJ•mol	-1		
			ln((p/Pa) = (374.6/R)	$(97\ 684.6)$	/R(T/K)) -	-(131.2/R)	$\ln((T/K)/2)$	98.15)		
274.4	0.84	0.534	34.89	0.2	61.68	291.3	4.15	0.558	159.70	-2.4	59.47
276.5	2.72	1.381	43.16	0.5	61.41	294.3	5.11	0.531	206.10	-2.0	59.07
274.8	2.58	1.619	35.15	-1.0	61.63	294.4	2.64	0.265	213.40	3.6	59.06
279.5	2.84	1.062	58.15	1.4	61.01	298.3	5.01	0.372	288.60	1.4	58.55
282.4	2.91	0.897	74.10	-0.1	60.03	301.3	4.04	0.200	374.00	11.0	08.10 57.76
200.0	2.04	0.037	90.25 193.60	-0.2	59.86	304.3	0.07 7 14	0.200	440.30 591 70	-7.7	57.70
200.0	5.05	0.001	125.00	1.5	JJ.00	500.2	7.14	0.232	021.70	5.0	57.51
			ln(3-Et-pentanol-3 $p/P_{2} = (400 \ 4/R)$	(298.1) = (14.625.0)	(5 K) = (5 R) = (5 R)	7.34 ± 0.2	$(T/K)^{\prime}$	08 15)		
975 3	3.88	1 593	53 33	p/ra = (400.4/n)	$(14\ 025.0)$	296 3	8 11	0 531	397.10)	-6.2	57.64
278.4	4 33	1.328	70.85	0.1	60.48	299.3	9.11	$0.001 \\ 0.478$	405 49	-12.7	57.16
281.3	4.62	1.062	93.81	1.2	60.02	302.2	7.83	0.319	521.99	1.1	56.70
284.3	4.50	0.797	121.33	0.1	59.54	305.2	8.31	0.266	663.97	14.3	56.23
287.3	4.65	0.637	156.12	-1.5	59.07	308.2	10.11	0.266	808.14	2.7	55.75
290.3	5.04	0.531	202.55	-0.7	58.59	311.2	13.90	0.292	1009.03	16.5	55.28
293.3	6.43	0.531	258.03	-2.3	58.12						
				2-Me-heptanol-	2: $\Delta_{1}^{g}H_{m}(298)$	15 K = (6)	52.87 ± 0.1	18)kJ·mo	-1		
			ln(p/Pa) = (368.1/R)) - (98.387.1)	R(T/K)) -	(119.1/R)	$\ln((T/K)/2)$	298.15)		
275.4	0.98	1.619	11.78	0.3	65.58	296.2	3.37	0.797	80.71	-2.1	63.10
278.4	1.89	2.336	15.66	0.0	65.22	299.3	3.86	0.69	106.60	-1.3	62.73
281.2	2.29	2.124	20.75	0.1	64.88	302.3	3.83	0.531	137.50	-0.9	62.37
284.2	2.73	1.858	28.21	0.5	64.53	305.2	4.95	0.531	177.40	2.3	62.03
287.2	3.01	1.593	36.22	-0.6	64.17	308.2	5.04	0.425	226.00	4.0	61.67
290.2	3.29	1.328	47.45	-1.1	63.81	311.3	4.76	0.319	284.40	2.5	61.30
293.2	3.51	1.062	63.17	-0.5	63.46	314.2	4.92	0.265	353.20	2.6	60.95
				2-Et-hexanol-1	; $\Delta_{l}^{g}H_{m}(298.1$	5 K = (68	3.51 ± 0.2	7) kJ·mol	-1		
000.0	0.14	0.000	ln(p	p/Pa) = (371.9/R)	$-(103\ 065.7)$	R(T/K) -	-(115.9/R)	$\frac{1}{2}\ln((T/K/2))$	(98.15))	1.1	00.41
293.8	2.14	2.639	15.36	-0.1	69.02	316.3	4.32	0.743	110.05	-1.1	66.41
298.7 201.6	2.04	2.030	24.60	0.1	08.40	319.Z	4.19	0.304	140.19	0.0	65.72
301.0	3.03	1.012	J1.00 41.71	-0.5	67.78	325.2	2.01	0.410	220.45	-2.8	65.38
304.0 307.4	3.38	1 188	53 71	0.4	67.44	325.2 328.2	$5.01 \\ 5.25$	0.356	278.19	31	65.03
310.3	3.76	1.040	68.41	0.4	67.11	331.2	5.36	0.297	340.97	-0.3	64.69
313.3	3.97	0.861	87.21	0.0	66.76	001.2	0.00	0.201	010101	010	01100
			3.	5.5-tri-Me-hexan	nol-1: $\Lambda^{g} H_{m}(2)$	98.15 K) =	= (67.86 +	0.42) kJ·	mol^{-1}		
			ln	(p/Pa) = (345.4/R)	(95856.6)	R(T/K) -	- (93.9/R)	$\ln((T/K)/2)$	98.15)		
288.2	1.25	3.212	6.72	-0.1	68.79	309.4	2.22	0.815	46.80	-0.8	66.80
291.3	1.38	2.600	9.15	-0.1	68.50	312.4	2.33	0.661	60.52	-0.6	66.52
294.4	1.90	2.600	12.57	0.1	68.21	315.4	2.11	0.473	76.67	-1.2	66.24
297.4	2.25	2.268	17.08	0.5	67.93	318.4	1.88	0.332	97.20	-1.6	65.96
300.4	3.16	2.458	22.14	0.4	67.65	321.4	1.75	0.235	127.70	3.1	65.68
303.4	1.91	1.157	28.41	0.0	67.37	324.4	2.13	0.235	155.70	-0.6	65.40
306.4	2.02	0.921	37.71	0.8	67.09						
			2	,6-di-Me-heptano	ol-4; $\Delta_{\rm l}^{\rm g} H_{\rm m}(29$	8.15 K) =	$(65.17 \pm$	0.29) kJ•n	nol ⁻¹		
070.0	0.07	0.00	ln(p	p/Pa) = (364.3/R)	$-(100\ 053.3)$	R(T/K) -	-(117.0/R)	$l)\ln((T/K)/$	298.15)	1.0	01 50
278.2	0.67	2.39	4.91	0.3	67.50	303.2	1.56	0.558	48.05	-1.0	64.58
283.3	0.88	1.937	10 57	0.1	66.91	JU6.2	1.59	0.451	6U.55	-2.4	64.23
288.2	1.51	1.800	12.57	-0.1	00.33	012.2 915 0	1.08	0.265	102.40	0.4	03.03 69.17
291.2 204 9	1.52	1.093	10.02	-0.3	00.98	010.Z	1.98	0.265	128.00	-0.7	60 00
494.2 997 9	1.70	1.004	21.01 20 50	-0.0	00.00	010.Z 391.9	∠.00 3.97	0.200	208 80	0.0 75	02.02 62.47
300.2	1.02	0 797	25.50	-0.9	64 93	041.4	0.07	0.013	200.00	1.0	02.47
33 0.1		0.101	00.00	0.0	0 1.00						

^{*a*} Temperature of saturation. N₂ gas flow (2.5 to 4.8) dm³·h⁻¹. ^{*b*} Mass of transferred sample condensed at T = 243 K. ^{*c*} Volume of nitrogen used to transfer mass *m* of sample. ^{*d*} Vapor pressure at temperature *T* calculated from *m* and the residual vapor pressure at T = 243 K.

uncommon journals in the former USSR. We have used these compilations as well as the recent original papers for a survey of enthalpies of formation and enthalpies of vaporization of aliphatic alcohols as listed in Table 2. Having revealed the lack of thermodynamic information on the branched alcohols in the literature, we have

		$\Delta_{ m f} H^{ m o}_{ m m} \left(l ight) \ { m exptl}$	$\Delta_{\mathrm{f}} H^{\mathrm{o}}_{\mathrm{m}}$ calcd	Δ	$\Delta_{ m l}^{ m g} H_{ m m} \ { m exptl}$	$\Delta^{ m g}_{ m l} H_{ m m} \ { m calcd}$	Δ	$\Delta_{\mathrm{f}} H^{\mathrm{o}}_{\mathrm{m}}(\mathrm{g})^{a} \ \mathrm{exptl}$	$\Delta_{\mathrm{f}} H^{\mathrm{o}}_{\mathrm{m}}\left(\mathrm{g} ight)$ calcd	Δ
1	2	3	4	5	6	7	8	9	10	11
1	1-butanol	-325.8 ± 0.7 65-Cha/Ros -327.6 ± 1.1 78-Sac/Pes -327.2 ± 0.3	-324.7	2.5	52.3 ± 0.1 66-Wadso	52.7	0.4	-274.9 ± 0.4	-273.9	1.0
2	2-butanol	69-Mos/Dec -342.6 ± 0.6 65-Cha/Ros -342.8 ± 1.0 78 Spa/Pos	-339.5	3.3	$\begin{array}{c} \textbf{49.7} \pm 0.1 \\ \textbf{66-Wadso} \end{array}$	49.5	-0.2	-293.01 ± 1.0	-291.2	1.9
3	2-Me-propanol-1	-333.6 ± 0.6 65-Cha/Ros -333.2 ± 0.7 78- Sac/Pes	-333.7	-0.5	$\begin{array}{c} \textbf{50.8} \pm 0.1 \\ \textbf{66-Wadso} \end{array}$	49.3	-1.5	-282.4 ± 0.8	-284.1	-1.7
4	2-Me-propanol-2	-359.2 ± 0.8 75 Mos/Doc	-359.3	-0.1	46.6 ± 0.1	47.0	0.4	-312.6 ± 0.8	-313.1	-0.5
5	1-pentanol	-351.6 ± 0.4 75-Mos/Dec -357.9 ± 0.5	-350.5 -357.9 ± 0.5	1.1 -357.9 ± 0.5	57.7 ± 1.1 60-Green 56.9 ± 0.2 60-Green	57.5	0.6	-294.7 ± 0.5	-294.6	0.1
6	2-pentanol	$\begin{array}{l} -352.6\pm0.8\\ 69\text{-Gun/Har}\\ -367.1\pm0.7\\ 65\text{-Cha/Ros}\\ -366.4\pm1.7\\ 70\text{-Con}\\ -365.2\pm1.1\\ 74\text{-Sac/Pes} \end{array}$	-352.6 ± 0.8 69-Gun/Har -365.4	-352.6 ± 0.8 69-Gun/Har -0.2	56.9 \pm 0.2 66-Wadso 55.15 79-Tho/Mea 52.6 \pm 1.3 65-Cha/Ros 53.0 \pm 0.4 63-McC/Lei 54.2 \pm 0.3 855 Moi/Sus	54.3	0.1	-311.0 ± 1.2	-312.0	-1.0
7	3-pentanol	-370.3 ± 0.6 65-Cha/Ros -368.9 ± 0.8 74-Sac/Pes	-366.4	2.5	53.2 ± 0.1 53.2 ± 0.1 88-Pes/Shv 55.1 79-Tho/Mea 52.9 ± 0.3 63-McC/L ei	52.7	-0.2	-316.0 ± 0.9	-313.3	2.7
8	2-Me-butanol-1	-356.6 ± 0.6 65-Cha/Ros	-356.4	0.2	55.5 79-Tho/Mea 54.1 ± 0.3 $63\pm$ McC/Lei	54.4	0.3	-302.5 ± 0.7	-302.3	0.2
9	3-Me-butanol-1	-355.9 ± 1.6 85-Mar/Shv -356.4 ± 0.6 65-Cha/Bos	-355.3	0.6	54.3 ± 0.1 63-McC/Lei 55.0 ± 1.3 65-Cha/Bos	56.0	1.7	-301.6 ± 1.6	-301.0	0.6
10	2-Me-butanol-2	-379.4 ± 0.9 91-Wib/Hao -379.5 ± 0.5 65-Cha/Ros -383.3 ± 1.2 87-Shvaro	-383.0	0.3	$\begin{array}{l} 49.2 \pm 0.4 \\ 63-McC/Lei \\ 50.1 \\ 85b-Maj/Svo \\ 50.2 \pm 0.3 \\ 88-Pes/Shv \\ \mathbf{51.5 \pm 0.3} \\ 01b-Kul/Ver \end{array}$	50.4	-1.1	-331.8 ± 1.2	-332.4	-0.6
11	3-Me-butanol-2	-369.9 ± 1.4 70-Conn -366.6 ± 0.7 65-Cha/Ros	-371.3	-1.4	53.5 \pm 0.4 70-Conn 51.7 \pm 0.6 63-McC/Lei 51.6 \pm 0.3 01b-Kul/Ver	51.2	-0.4	-318.3 ± 1.4	-319.7	-1.4
12	2,2-di-Me-propanol-1		-371.7		51.8 ± 0.3	50.1	-1.7		-320.6	
13	1-hexanol	$\begin{array}{c} -379.4\pm1.0\\ 65\text{-Cha/Ros}\\ -383.9\pm2.0\\ 60\text{-Green}\\ -377.5\pm0.5\\ 75\text{-Mos/Dec} \end{array}$	-376.3	1.2	$\begin{array}{l} 61.6 \pm 0.2 \\ 66-Wadso \\ 61.8 \pm 0.2 \\ 77-Man/Sel \\ 62.8 \pm 1.3 \\ 60-Green \\ 61.1 \pm 0.4 \\ 92-NGu/Kas \\ 61.7 \pm 0.3 \\ this work \end{array}$	62.3	0.6	-315.8 ± 0.6	-315.6	0.2
14	2-hexanol	-394.1 ± 0.9 81-Wib/Was -392.0 ± 0.9 84-Wib/Was -392.3 ± 1.2 80.522	-391.2	0.8	57.9 ± 0.2 75-Bra/And 56.5 ± 0.3 92-NGu/Kas 57.0 ± 0.2 this work	59.1	2.1	-335.0 ± 0.9	-333.0	2.0
15	3-hexanol	-390.3 ± 0.9 84-Wib/Was -393.9 ± 0.9 80-Sac	-392.2	-1.9	$\begin{array}{l} \text{Ims work} \\ 58.3 \pm 0.4 \\ 79\text{-Tho/Mea} \\ 57.0 \pm 0.2 \\ 75\text{-Cab/Con} \\ \textbf{58.6 \pm 0.4} \\ 01b\text{-Kul/Ver} \end{array}$	57.4	-1.2	-331.7 ± 1.0	-334.1	-2.4

Table 2. Experimental Results Available for Linear and Branched Aliphatic Alcohols at 298.15 K in kJ mol^{-1 a}

Table 2 (Continued)

- 4010	_ (continueu)									
		$\Delta_{ m f} H^{\circ}_{ m m} \left(l ight) = { m exptl}$	$\Delta_{\mathrm{f}} H^{\mathrm{o}}_{\mathrm{m}}$ calcd	Δ	$\Delta_{ m l}^{ m g} H_{ m m} \ { m exptl}$	$\Delta_{ m l}^{ m g} H_{ m m}$ calcd	Δ	$\Delta_{ m f} \! H^{ m o}_{ m m}({ m g})^a \ { m exptl}$	$\Delta_{\mathrm{f}} H^{\circ}_{\mathrm{m}}\left(\mathrm{g} ight)$	Δ
1	2	3	4	5	6	7	8	9	10	11
16	2-Me-pentanol-1		-382.2		63.4 79-Tho/Mea 59.4 ± 0.3 01b-Kul/Ver	59.2	-0.2		-323.2	
17	3-Me-pentanol-1		-378.0		61.7 ± 0.3 01b-Kul/Ver	61.1	0.6		-319.0	
18	4-Me-pentanol-1		-381.1		60.5 ± 0.3 85b-Mai/Svo	60.8	0.3		-321.9	
19	2-Me-pentanol-2	- 408.6 ± 1.3 87-Shvaro	-408.8	-0.2	54.8 ± 0.3 85b-Maj/Svo 54.8 ± 0.1	55.2	0.4	-353.8 ± 1.3	-353.2	0.6
20	3-Me-pentanol-2		-394.0		58.4 79-Tho/Mea 58.2 ± 0.3 01b-Kul/Ver	56.2	-2.0		-337.7	
21	4-Me-pentanol-2	-394.7 ± 0.8 74-Sac/Pes	-396.0	-1.3	58.0 79-Tho/Mea 57.3 ± 0.3 01b-Kul/Ver	57.6	-0.3	-337.4 ± 0.9	-339.4	-2.0
22	2-Me-pentanol-3	-396.4 ± 1.0 74-Sac/Pes	-398.1	-1.7	56.7 ± 0.1 75-Bra/And 56.0 ± 0.5 01b-Kul/Ver	54.3	-1.7	-340.4 ± 1.2	-341.8	-1.4
23	3-Me-pentanol-3	-404.9 ± 0.9 91-Wib/Hao -406.3 ± 1.7 73-Sac/Pes	-406.8	-0.5	$\begin{array}{l} 56.7 \pm 0.8 \\ 91\text{-Wib/Hao} \\ 54.0 \pm 1.0 \\ 91\text{-}73\text{-}Sac/Pes \\ \textbf{55.7} \pm 0.3 \\ 01b\text{-}Kul/Ver \end{array}$	53.9	-1.8	-350.6 ± 1.7	-351.6	-1.0
24	2,2-di-Me-butanol-1	-	-391.3		56.1 73/Wil/Zwo	55.4	0.7		-335.6	
25	3,3-di-Me-butanol-1		-389.2		61.0 96-Ulb/Klu 58.0 ± 0.2 01b-Kul/Ver	58.7	-0.7		-333.2	
26	2,3-di-Me-butanol-2	-411.0 ± 1.5	-411.6	-0.6	54.0 ± 0.8	52.4	-1.6	-357.0 ± 1.7	-357.9	-0.9
27	3,3-di-Me-butanol-2	91-WID/IIA0	-406.2		53.8 ± 0.3 01b-Kul/Ver	52.2	-1.6		-353.0	
28	2-Et-butanol-1		-379.1		63.5 79-Tho/Mea 60.3 ± 0.3 01b-Kul/Ver	59.4	-0.9		-320.2	
29	1-heptanol	$\begin{array}{c} -409.4\pm2.3\\ 60\text{-Green}\\ -398.8\pm0.8\\ 65\text{-Cha/Ros}\\ -403.4\pm0.5\\ 75\text{-Mos/Dec} \end{array}$	-402.1	1.3	67.8 ± 1.5 60-Green 66.8 ± 0.2 77-Man/Sel 66.8 ± 0.4 92-NGu/Kas 66.9 ± 0.4 this work	67.0	0.1	-336.5 ± 0.6	-336.4	0.1
30	2-heptanol	- 416.9 ± 0.7 84-Wib/Was -416.7 ± 3.2 80-Sac	-417.0	-0.1	$\begin{array}{l} 61.5 \pm 0.2 \\ 75\text{-Bra/And} \\ 59.9 \pm 0.6 \\ 63\text{-Tho/Mea} \\ 61.5 \pm 0.5 \\ 99\text{-NGu/Ber} \\ 62.7 \pm 0.9 \\ 80\text{-Sac} \\ \textbf{62.1} \pm 0.4 \\ 04\text{-Ver/Hei} \\ \end{array}$	63.9	1.8	-354.8 ± 0.8	-353.9	0.9
31	3-heptanol	-416.8 ± 0.7 84-Wib/Was - 418.1 ± 1.3 80-Sac	-418.0	0.1	61.5 ± 0.9 63-Tho/Mea 62.4 ± 0.7 79-Tho/Mea 63.6 ± 1.0 80-Sac 60.3 ± 0.2 99-NGu/Ber	62.2	1.9	-357.8 ± 1.3	-355.1	2.7
32	4-heptanol	- 416.3 ± 0.7 84-Wib/Was -409.9 ± 1.5 80-Sac	-418.0	-1.7	$\begin{array}{c} 60.3 \pm 0.5 \\ 63\text{-Tho/Mea} \\ 62.6 \pm 0.6 \\ 75\text{-Cab/Con} \\ 62.3 \pm 0.9 \\ 80\text{-Sac} \\ \textbf{62.4} \pm 0.3 \\ 04\text{-Ver/Hei} \end{array}$	62.2	-0.2	-353.9 ± 0.8	-355.1	-1.2

Table 2 (Continued)

		$\Lambda_{t}H^{\circ}(1)$	ΛH°		$\Lambda^{g}_{e}H_{e}$	Λ^{g}_{H}		$\Lambda_{e}H^{\circ}(\sigma)^{a}$	$\Lambda_{e}H^{\circ}(\sigma)$	
		exptl	calcd	Δ	exptl	calcd	Δ	exptl	calcd	Δ
1	2	3	4	5	6	7	8	9	10	11
33	2-Me-hexanol-2	−435.2 ± 1.3 87-Shvaro	-434.7	0.5	58.0 ± 0.5 63-Tho/Mea 61.2 ± 0.5 88-Pes/Shv 58.6 ± 0.4	60.0	1.4	-376.6 ± 1.4	-374.2	2.4
34	5-Me-hexanol-3		-422.9		this work 59.8 ± 0.3	60.8	1.0		-361.5	
35	2,2-di-Me-pentanol-3		-433.1		54.8	55.4	0.6		-375.1	
36	3-Et-pentanol-3		-430.5		57.3 ± 0.2	57.3	0.0		-370.7	
37	2,4-di-Me-pentanol-3		-429.8		53.9 ± 0.7	56.0	2.1		-370.3	
38	1-octanol	$\begin{array}{l} -435.0\pm2.7\\ 60\text{-Green}\\ -425.2\pm1.1\\ 65\text{-Cha/Ros}\\ -426.6\pm0.6\\ 75\text{-Mos/Dec}\\ -428.0\pm1.1\\ 69\text{-Gun/Har} \end{array}$	-427.9	-1.3	$\begin{array}{l} \text{5.5} & \text{71.6}, \text{71.6}, \text{72.8} \pm 1.7 \\ \text{60-Green} \\ \text{71.1} \pm 0.4 \\ \text{69-Gan/Har} \\ \text{71.0} \pm 0.4 \\ \text{77-Man/Sel} \\ \text{71.2} \pm 0.6 \\ \text{92-NGu/Kas} \\ \textbf{70.1} \pm 0.3 \end{array}$	71.8	1.7	-356.5 ± 0.7	-357.3	-0.8
39	2-octanol	- 441.5 ± 1.0 80-Sac	-442.8	-1.3	01a-Kul/Ver 67.2 \pm 0.4 66-Gei/Fru 66.4 \pm 0.4 90-Amb/Ghi 66.9 \pm 0.7 99-NGu/Ber 67.9 \pm 0.3	68.6	0.7	-373.6 ± 1.0	-374.8	-1.2
40	3-octanol	- 443.3 ± 1.0 80-Sac	-443.9	-0.6	04-Ver/Hei 69.3 \pm 0.8 66-Gei/Fru 66.2 \pm 0.8 99-NGu/Ber 67.9 \pm 0.4	67.0	-0.9	-375.4 ± 1.1	-376.0	-0.6
41	4-octanol	-436.0 ± 2.5 80-Sac	-443.9	-7.9	04-Ver/Hei 66.5 \pm 0.7 66-Gei/Fru 67.2 \pm 0.5	67.0	-0.2	-368.8 ± 2.5	-376.0	-7.2
42	2-Me-heptanol-2		-460.5		04-Ver/Hei 62.9 ± 0.2	64.8	1.9		-395.0	
43	2-Et-1-hexanol	-432.9 ± 0.8 60-Tje	-430.7	2.2	this work 66.5 ± 0.5 90-Amb/Ghi 66.6 61-Dyk/Sep 63.7 ± 1.3 73-Lyn/Wic 68.1 ± 0.3 this work	69.0	0.9	-364.8 ± 2.5	-362.1	2.7
44	2,4,4-tri-Me-1-pentanol		-437.4	-	63.2 96-Ulb/Klu	64.7	1.5		-371.9	
45	2-Et-4-Me-1-pentanol		-435.6	-	62.4 61-Dvk/Sep	67.5	5.1		-368.4	
46	1-nonanol	$\begin{array}{l} -460.5\pm3.0\\ 60\text{-Green}\\ -459.2\pm1.2\\ 65\text{-Cha/Ros}\\ -453.6\pm0.6\\ 75\text{-Mos/Dec} \end{array}$	-453.8	-0.2	77.8 \pm 1.9 60-Green 76.9 \pm 0.8 77-Man/Sel 75.1 \pm 0.6 92-Ngu/Kas 74.7 \pm 0.3	76.6	1.9	-378.9 ± 0.7	-378.3	0.6
47	2-nonanol		-468.6		this work 72.0 ± 0.6 99-Ngu/Ber 72.9 ± 0.6 04-Ver/Hei	73.4	0.5		-395.6	
48	3-nonanol		-469.7		71.0 ± 0.8 99-Ngu/Ber 70.9 ± 0.3	71.8	0.8 0.9		-396.9	
49	4-nonanol		-469.7		04 -Ver/Hei 71.5 ± 0.3	71.8	0.3		-396.9	
50	5-nonanol		-469.7		71.4 ± 0.4	71.8	0.4		-396.9	
51	2,6-di-Me-4-heptanol		-479.4		65.2 ± 0.3	68.6	3.4		-409.6	
52	3,5,5-tri-Me-1-hexanol	-456.9 ± 2.9 60-Nich	-459.0	-2.1	67.9 ± 0.4	71.4	3.5	-389.0 ± 2.9	-388.6	0.4

Table 2 (Continued)

		$\Delta_{\mathrm{f}} H^{\circ}_{\mathrm{m}}\left(\mathrm{l} ight) = \mathrm{exptl}$	$\Delta_{\mathrm{f}} H^{\mathrm{o}}_{\mathrm{m}}$ calcd	Δ	$\Delta^{ m g}_{ m l} H_{ m m} \ { m exptl}$	$\Delta^{ m g}_{ m l} H_{ m m}$ calcd	Δ	$\Delta_{\mathrm{f}} H^{\mathbf{o}}_{\mathrm{m}}(\mathrm{g})^{a} \ \mathrm{exptl}$	$\Delta_{\mathrm{f}} H^{\mathrm{o}}_{\mathrm{m}}\left(\mathrm{g} ight)$ calcd	Δ
1	2	3	4	5	6	7	8	9	10	11
53	2,2,4,4-tetra-Me-pentanol-3	-450.8 ± 0.9 98-Ver	-481.0	-30.5	53.8 ± 0.9 98-Ver	57.2	3.4	-397.0 ± 1.3	-415.6	-18.6
54	1-decanol	-486.1 ± 3.3 60-Green -479.7 ± 1.0 65-Cha/Ros - 478.1 ± 1.1 75-Mos/Dec	-479.6	-1.5	$\begin{array}{l} 77.8 \pm 0.8 \\ 65\text{-Dav/Kyb} \\ 82.9 \pm 2.1 \\ 60\text{-Green} \\ 81.5 \pm 0.8 \\ 77\text{-Man/Sel} \\ 81.5 \pm 0.8 \\ 79\text{-Svens} \\ 81.4 \pm 0.8 \\ 92\text{-NGu/Kas} \\ 80.9 \pm 0.3 \\ 01a\text{-Kul/Ver} \end{array}$	81.4	-0.5	-397.2 ± 1.0	-399.0	-1.8
55	2-decanol		-494.5		$\begin{array}{l} \textbf{77.4} \pm 0.9 \\ \textbf{99-NGu/Ber} \end{array}$	78.2	0.8		-416.5	
56	3,7-di-Me-1-octanol		-486.2		82.0 47-Stull	78.7	-3.3		-408.9	
57	1-undecanol	- 504.9 ± 0.8 75-Mos/Dec	-505.4	0.5	$\begin{array}{c} 86.7 \pm 0.9 \\ 91\text{-Khas} \\ 85.1 \pm 0.9 \\ 92\text{-NGu/Kas} \\ 84.7 \pm 0.3 \\ 01a\text{-Kul/Ver} \end{array}$	86.2	1.5	-420.2 ± 0.9	-419.9	0.3
58	2-undecanol		-520.3		76.3 47-Stull 80.8 ± 1.0 99-NGu/Ber	83.0	2.2		-437.4	
59	1-dodecanol	- 528.5 ± 0.8 75-Mos/Dec	-531.2	-2.7	96.6 \pm 1.7 65-Davies 92.0 \pm 0.6 77-Man/Sel 91.8 \pm 0.6 79-Svens 88.7 \pm 0.8 92-NGu/Kas 90.0 \pm 0.3 91.8 Ku/War	90.9	0.9	-438.5 ± 0.9	-440.9	-2.4
60	2-dodecanol		546.1		86.7 ± 1.1 99-NGu/Ber	87.8	1.1		-458.3	
61	2,2,4,4-tetra-Me-3 -iPr-pentanol-3	-476.6 ± 2.1 98-Ver	-542.5	-65.9	$\begin{array}{c} 58.5 \pm 0.8\\ 98\text{-Ver} \end{array}$	63.9	5.4	-418.1 ± 2.2	-465.6	-47.5
62	1-tridecanol	-573.8 ± 0.9 75-Mos/Dec	-557.0	16.8	95.0 ± 0.9 92-Ngu/Kas 95.8 ± 0.6 01a-Kul/Ver	95.7	-0.1	-478.0 ± 1.1	-461.7	16.3
63	1-tetradecanol	-581.4 ± 0.7 75-Mos/Dec -579.7 ± 1.8 91-Ste/Chi	-582.9	-1.5	96.9 ± 0.8 92-NGu/Kas 98.7 ± 0.6 01a-Kul/Ver	100.5	1.8	-482.7 ± 0.9	-482.5	0.2
64	2-tetradecanol	01 <i>Sto</i> , 011	-597.7		95.4 ± 1.3 99-NGu/Ber	97.3	1.9		-500.0	
65	1-pentadecanol	$\begin{array}{c} -\textbf{634.7}\pm0.6\\ 75\text{-Mos/Dec} \end{array}$	608.7	26.0	104.5 ± 1.1 92-NGu/Kas 102.5 ± 0.6 01a-Kul/Ver	105.3	2.8	-532.2 ± 0.8	-503.5	28.7
66	1-hexadecanol		-634.5		110.6 ± 1.4 92-NGu/Kas 108.8 ± 0.6 01a-Kul/Ver	110.1	1.3		-524.4	
67	2-hexadecanol		-649.3		103.9 ± 1.3 99-NGu/Ber	106.9	3.00		-541.8	

^{*a*} Values taken in the group-additivity calculations are in bold.

performed a series of experimental studies on these species (98-Ver, 01a-Kul/Ver), and in this work we report some additional vapor-pressure measurements on eight branched and three linear aliphatic alcohols (Table 1).

There were several reports of the temperature dependence of the vapor pressure of the aliphatic alcohols in the literature. However, most authors did not calculate enthalpies of vaporization from their results. Hence, original experimental results published in the literature have been systematically treated using eqs 2 and 3, and $\Delta_{\rm s}^{\rm g}H_{\rm m}(298.15 \text{ K})$ have been calculated and added to the database. The collection of the available experimental results on aliphatic alcohols is presented in Table 2. Improvement of the Benson Group-Additivity Scheme. A group is defined by Benson (76-Ben) as "a polyvalent atom (ligancy ≥ 2) in a molecule together with all of its ligands." In this work, we endorse and follow Benson. A group is written as $X-(A)_i(B)_j(C)_k(D)_l$, where X is the central atom attached to i A atoms, j B atoms, and so forth. In the present discussion, only C, H, and O atoms are considered, so X is necessarily a carbon or oxygen atom. In addition, there are several corrections for nonbonded interactions that are required because of spatial interactions that are not defined in terms of a series of chemical bonds. The most common and relevant to this work are the 1,4 interaction (or gauche interaction) and the 1,5 interaction of two methyl groups. The presence or absence of these corrections depends on interactions of parts of a molecule whose proximity is not implicit in bonding alone. These considerations pose problems for any algorithmic approach to additivity schemes, without which the codification of computer-executable procedures for calculating thermochemical properties would be almost trivial.

The first correction, as defined by Benson (76-Ben), is for gauche interactions (or 1,4 interactions) of large groups, that is, anything larger than H atoms. A rapid method for identifying gauche interactions along single bonds is to draw a line skeleton formula of a molecule and count the number of hydrogen-containing groups bound to the atoms at each end of the bond. If there is only one at each end, as in *n*-butane, then they can be trans or gauche to each other. If there are two at one end and one at the other end, then there must be one gauche interaction (most stable form), and there may be two (least stable form), as can be seen for 2-methylbutane. With three groups at one end and one at the other, there will always be two gauche interactions in all conformations (e.g., 2,2-dimethylbutane).

The second correction, as defined by Benson (76-Ben), is due to the repulsions between H atoms on 1,5-C atoms of the alkane chain. Thus, in 2,2,4,4-tetra-methylpentane, we would calculate four gauche interactions. However, the proximity of the H atoms on these adjacent on 1,5-C atoms of CH₃ groups is much closer than in gauche *n*-butane, and one finds correspondingly larger repulsion energies.

In contrast to Benson's definition of the gauche correction, we have suggested in this work that the 1,4-interaction should be applied systematically. In this case, this correction becomes a general one and not the occasional contribution, as defined by Benson. For instance, in *n*pentane there are no gauche interactions, but at the same time, there are two 1,4 interactions $(C-C)_{1-4}$ of the first and fourth C atoms as well as the second and fifth C atoms. Similarly for 2-methylpentane, there is one gauche interaction, but there are three 1,4 interactions. To set a general example, let us consider the incrementation of 2,2,5trimethylhexene:

In our opinion, there are at least two advantages to introducing into the Benson scheme the 1,4 correction as the systematic contribution instead of the gauche interaction. First, this suggestion simplifies the codification of computer-executable procedures for calculating thermochemical properties. Second, the accuracy of the predictions is expected to be even better. Indeed, we have checked this suggestion using the same data set on thermochemical properties of alkanes, as used by Cohen (96-Coh), and have calculated the gaseous and the liquid standard enthalpies of formation of 68 alkanes using the new 1,4 correction (C- C_{1-4} and, for comparison, using the gauche corrections, as assumed by Benson. We have revealed that the average standard deviation from the experimental data for the given data set of alkanes using the new 1,4 correction has been more then twice as accurate as those using the gauche correction! So far, for the set of gaseous enthalpies of formation the average standard deviation was ± 1.7 kJ mol^{-1} when using the 1,4 correction and $\pm 3.7 \text{ kJ} mol^{-1}$ when using Benson's gauche correction. The deviations for the set of liquid enthalpies of formation were appropriately ± 1.6 kJ mol⁻¹ and ± 3.8 kJ mol⁻¹. Thus, our simple

Table 3. Group-Additivity Values for Calculation of Enthalpies of Formation and Enthalpies of Vaporization of Aliphatic Alcohols at 298.15 K in kJ mol⁻¹

increment	$\Delta_{\rm f} H^{\rm o}_{\rm m} \left(l \right)$	no. in database ^a	$\Delta^{\mathrm{g}}_{\mathrm{l}} H_{\mathrm{m}}$	no. in database ^a	$\Delta_{\mathrm{f}} H^{\mathrm{o}}_{\mathrm{m}}\left(\mathrm{g}\right)$	no. in database ^a
C-(C)(H)3	-46.20	68	6.33	68	-40.28	49
$C - (C)_2(H)_2$	-28.93	60	4.52	52	-23.80	44
$C - (C)_{3}(H)$	-16.51	39	1.24	33	-13.68	26
$C-(C)_4$	-7.32	32	-2.69	25	-8.45	18
$(C-C)_{1-4}$	3.11	65	0.26	57	2.92	48
$(C-C)_{1-5}$	9.38	11	-0.42	8	10.66	8
$C - (C)(H)_2(O)$	-32.25	26	6.90	26	-29.03	26
$C - (C)_2(H)(O)$	-29.86	27	1.90	27	-29.97	27
$C - (C)_{3}(O)$	-30.25	8	-3.76	8	-33.74	8
O-(C)(H)	-190.40	63	31.80	58	-158.60	63
$(C - OH)_{1-4}$	-1.05	62	-1.63	57	-1.22	62

^{*a*} Total number of compounds in the experimental database used for the calculation of an increment.

redefinition (in comparison to Benson's) of the 1,4 interactions, which has been performed in this work, has substantially enhanced the accuracy of the predictive scheme without changing the number of parameters.

Evaluation of the GAVs. Our approach for the reevaluation of the GAVs was similar to that of others (96-Coh) in that we began by deriving GAVs for the alkane groups using as a database the same set of thermodynamic properties for 68 compounds as had been used by Cohen (96-Coh). The method of polyfunctional least squares was used to evaluate the parameters. The alkane groups, together with the derived increments for the liquid phase, vaporization enthalpy, and gaseous phase, are shown in Table 3. With these values fixed, we then turned to aliphatic alcohols to derive GAVs necessary for those compounds: C-(C)(H)₂(O), C-(C)₂(H)(O), C-(C)₃(O), and O-(C)(H) and a new parameter $(C-OH)_{1-4}$. These groups and their derived GAVs are listed in Table 3. GAVs for the liquid and gaseous phase enthalpies of formation, as well as GAVs for vaporization enthalpy, were derived in separate but parallel exercises. The GAVs evaluated in this work are based solely on experimental data, not on calculated values. It is worth mentioning that for the branched alkanes such as 2,2,4-trimethylpentane and 2,2,4,4-tetramethylpentane the additional (but the same as in the original Benson scheme) 1,5 correction $(C-C)_{1-5}$ has been applied. It is also guite obvious that by calculation of the branched alcohols (entries 43, 51, and 52 listed in Table 2) the parameter $(C-C)_{1-5}$ for the branching of the alkane chain has been also taken into account. However, some highly branched species (e.g., 2,2,4,4-tetramethyl-3isopropyl-3-pentanol) were deliberately omitted by evaluation of the GAVs because of their complexity. The values of the reevaluated Benson increments and nonbonded 1,4 and 1,5 interactions for the calculation of thermodynamic properties of alkanes and alcohols are presented in Table 3.

Extension of Benson's Methodology for the Prediction of Enthalpies of Vaporization. Original works by Benson (76-Ben) and updated compilations (96-Coh) do not provide group-additivity values for the calculation of vaporization enthalpies at 298.15 K. This is not the fault of the empirical and half-empirical methods for the estimation of the enthalpies of vaporization of organic compounds (89-Maj/Svo, 81-Chi/Hym, 1981, 80-Duc/Gru). However, it seems to be logical to follow Benson's methodology for this thermodynamic property as well. In this work, for the prediction of vaporization enthalpies of alcohols we have applied the same definition of groups and the same evaluation procedure as those for enthalpies of formation. The summary of the vaporization enthalpies of aliphatic alcohols involved in the calculation is presented in column 6 of Table 2. GAVs are listed in column 3 of Table 3.

Validation of the Experimental Results Available for Aliphatic Alcohols. The compilation of the available experimental data on aliphatic alcohols is listed in Table 2. It is conspicuous that very often the spread in an enthalpy measured by several groups (even very experienced groups) is dramatically larger than its experimental uncertainty (entries 1-16, 19-23, 25, 28-33, 38-41, 43, 46-48, 54, 57-59, 62, 63, 65, and 67 in Table 2). Such scatter in the data forces one to set preferences, but one needs a criterion to assess the reliability of the experimental results. It has been possible in this work to evaluate independently the reliability of individual experimental data. One of the best flags of possible experimental errors is a large discrepancy between experimental and calculated values, especially if other, closely related compounds show no such discrepancy. In the frame of this work, we have evaluated GAVs for the three thermodynamic properties simultaneously. Taking into account that all three of these properties are not independent and that they are connected by the general equation

$$\Delta_{\rm f} H_{\rm m}^{\rm o}\left({\rm g}\right) = \Delta_{\rm f} H_{\rm m}^{\rm o}\left({\rm l}\right) + \Delta_{\rm l}^{\rm g} H_{\rm m}$$

it has been possible to check experimental data sets for each individual compound from Table 2 for internal consistency by fitting them into the correlation and by minimizing the deviation of predicted and experimental properties. Using simultaneous optimization of the GAVs for enthalpies of formation (in the gaseous and in liquid states) and enthalpy of vaporization, we have been able to select a set of reliable experimental values for each individual compound involved in the data treatment. These values are given in bold in Table 2 and could be recommended as an internally consistent data set. An analysis of the results presented in Table 2 shows that the average standard deviation of the selected experimental data taken into correlation and the average standard deviation between experimental and predicted values are at the same level of 0.6 to 1.5 kJ mol⁻¹. However, for several alcohols (entries 41, 45, 51, 53, 56, 61, 62, and 65 in Table 2) large deviations between experimental and calculated values have been observed. We suggest that for the highly branched alcohol (entries 53 and 61 in Table 2) these large deviations could be possibly reduced by the introduction of some additional parameters into the calculating scheme. Deviations for entries 41, 62, and 65 in Table 2 are experimental outliers rather than due to an imperfection of the group-additive procedure.

Some special comments require the data published in reference [65-Cha/Ros]. The $\Delta_{\rm f} H^{\circ}_{\rm m}$ (l) in this work were derived from bomb combustion measurements in one of the most reputable laboratories. However, large deviations of 3 to 6 kJ mol⁻¹ of $\Delta_{\rm f} H^{\circ}_{\rm m}$ (l) for entries 5, 10, 11, 13, 29, 46 (Table 2) are apparent in comparison to other available data and to the calculated values (column 4 of Table 2). A reviewer of this paper, Dr. E. Domalski, has pointed this fact out and has provided some additional information in this context. In the 1980s, he had a conversation about this variation with Dr. Daniel Stull of Dow Chemical Company at a calorimetry conference. He told him that the *n*-alkanol samples that Dr. Chao used in the bomb combustion studies were not tested for water content but were used as received and assumed to be water-free. Thus, the large deviations of the experimental $\Delta_{\rm f} H^{\rm o}_{\rm m}$ (l) from the reference [65-Cha/Ros] might be affected by water traces and for this reason have not been taken into account by the calculation of increments.

The structural-additive methods, based on the classical theory of structure, make it possible to solve a number of vital practical problems: to understand the interrelations of structure and energetics of organic molecules, to detect and explain anomalies in the structures and properties of certain substances, to check the experimental data with mutual consistency, and to predict the values of the substance properties, which have not been investigated experimentally. Benson's group-additivity method seems to have the most widespread acceptance at present and the overall best record for reliability among estimation techniques. We follow this method, and the distinctive features of the present work are

- an extended experimental study of the thermochemical properties of alcohols;

- systematic gathering and uniform treatment of the available experimental data from the literature;

- an extension and revision of Benson's group-additivity method;

- a strict reliance on experimental values as a basis for evaluating GAVs; and

- a simultaneous compilation and evaluation of data for enthalpies in the liquid and in the gaseous phase together with vaporization enthalpies, thereby giving an additional basis for the validation of experimental results.

Literature Cited

04-Ver/Hei	Verevkin S. P.; Heintz, A.; Schick, C. J.
	Chem. Eng. Data, to be submitted for
	publication, 2005,.
01a-Kul/Ver	Kulikov, D.; Verevkin S. P.; Heintz, A. J.
	Chem. Eng. Data 2001, 46, 1593–1600.
01b-Kul/Ver	Kulikov, D.; Verevkin S. P.; Heintz, A.
	Fluid Phase Equilib. 2001b , 192, 187–
	207.
00-Ver	Verevkin, S. P. J. Chem. Eng. Data 2000,
	45, 946-952.
99-Rog/Bar	Roganov, G. N.; Baranov, O. M. Vestsi
0	Nats. Akad. Navuk Belarusi, Ser. Khim.
	Navuk 1999, 4, 49–54.
99-NGu/Ber	N'Guimbi, J.; Berro, C.; Mokbel, I.; Rauzy,
	E.; Jose, J. Fluid Phase Equilib. 1999,
	162, 143–158.
98-Ver	Verevkin S. P. Struct. Chem. 1998, 9,
	375-382.
97-Ver/Mor	Verevkin, S. P.; Morgenthaler, J.;
	Rüchardt C. J. Chem. Thermodyn.
	1997 , 29, 1175–83
97a-Ver	Verevkin, S. P. J. Chem. Thermodyn.
	1997 , <i>29</i> , 891–899.
97b-Ver	Verevkin, S. P. Thermochim. Acta 1997.
	307.17-25.
97-Sch/Ver	Schaffer, F.: Verevkin, S. P.: Rieger, HJ.:
	Beckhaus. HD.: Rüchardt C. Liebigs
	Ann. 1997. 1. 1333–1344.
96-Ver/Bec	Verevkin, S. P.: Beckhaus, HD.:
	Belen'kaja, R.S: Rakus, K.: Rüchardt, C.
	Thermochim, Acta 1996, 279, 47–64.
96-Ulb/Klu	Ulbig, P.: Klüppel, M.: Sculz, S.
	Thermochim, Acta 1996 , 271, 9–12.
96-Coh	Cohen, N. J. Phys. Chem. Ref. Data 1996.
	25. 1411–1481.
95-Nol/Ver	Nölke, M.: Verevkin, S. P.: Beckhaus, H.
	D.: Rüchardt, C.Liebigs Ann. 1995, 1
	41-51.

95a-Rak/Ver	Rakus, K.; Verevkin, S. P.; Keller, M.; Beckhaus, H. D.; Rüchardt, C. <i>Liebigs</i> <i>Ann.</i> 1995 , <i>1</i> , 1483–1493.
95b-Rak/Ver	Rakus, K.; Verevkin, S. P.; Peng, WH.; Beckhaus, H. D.; Rüchardt, C. <i>Liebigs.</i> <i>Ann.</i> 1995 , <i>1</i> , 2059–2067.
94-Rak/Ver	Rakus, K.; Verevkin, S. P.; Beckhaus, H D.; Rüchardt, C. Chem. Ber. 1994, 127, 2225-2234.
93-Dom/Her	Domalski, E. S.; Hearing, E. D. J. Phys. Chem. Ref. Data 1993 , 22, 805–1159.
92-NGu/Kas	N'Guimbi, J.; Kasehgari, H.; Mokbel, I.; Jose, J. Thermochim. Acta 1992 , 196, 367-377.
91-Wib/Hao	Wiberg, K. B.; Hao, S. J. Org. Chem. 1991, 56, 5108–5110.
91-Ste/Chi	Steele, W. V.; Chirico, R. D.; Nguyen, A.; Hossenlopp, I. A.; Smith, N. K. <i>DIPPR</i> <i>Data Ser.</i> 1991 , <i>1</i> , 101–134.
90-Amb/Ghi	Ambrose, D.; Ghiassee, B. J. Chem. Thermodyn. 1990 , 22, 307–311.
89-Maj/Svo	Majer, V.; Svoboda, V.; Pick, J. Heats of Vaporization of Fluids; Elsevier: Amsterdam, 1989.
88-Pes/Shv	Peschenko, A. D.; Shvaro, O. V.; Zubkov, V. I. Thermodyn. Org. Soedin. (Gorky) 1988, 39-41
87-Shvaro	Shvaro, O. V. Thermodynamics of Some Cyclic and Aliphatic Ketones and Alcohols C_4-C_8 . Ph.D. Thesis, University of Minsk, Belorussia, USSR, 1987
87-Mar/Shv	Markovnik, V. S.; Shvaro, O. V.; Al'khimovich, V. M.; Sachek, A. I. Termodin, Org. Socdin, 1987 , 68–70
85a-Maj/Svo	Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds; IUPAC Chemistry Data Series 32; Blackwell Scientific Publications:
85b-Maj/Svo	Majer, V.; Svoboda, V. Fluid Phase Fauilib 1985b 20 111-136
86-Ped/Nay	Pedley, J. P.; Naylor, R. D.; Kirby, S. P. <i>Thermochemical Data of Organic</i> <i>Compounds</i> , 2nd ed.; Chapman and Hall: London, 1986
85-Gie/Rog	Gierycz, P.; Rogalski, M.; Malanowski, S. Fluid Phase Equilib. 1985 , 22, 107– 122
84-Wib/Was	Wiberg, K. B.; Wasserman, D. J.; Martin, E. J. Phys. Chem. 1984 , 88, 3684–3688.
81-Wib/Was	Wiberg, K. B.; Wasserman, D. J. J. Am. Chem. Soc. 1981 , 103, 6563–6566.
81-Chi/Hym	 Chickos, J. S.; Hyman, A. S.; Ladon, L. H.; Liebman, J. F. J. Org. Chem. 1981, 46, 4294-4296
80-Duc/Gru	Ducros, M.; Gruson, J. F.; Sannier, H. Thermochim. Acta 1980 , 36, 39–65.
80-Sac	Sachek, A. I. Enthalpies of Formation and Vapor Pressures of the Secondary Aliphatic Alcohols C_4-C_8 . Ph.D. Thesis, University of Minsk, Belorussia, USSR, 1980.
79-Tho/Mea	Thomas, L. H.; Meatyard, R.; Smith, H.; Davies, G. H. J. Chem. Eng. Data 1979 , 24, 159–161.

79-Sven	Svensson, Ch. J. Chem. Thermodynam. 1979, 11, 593–596.
78-Sac/Pes	Sachek, A. I.; Peshchenko, A. D.; Andreevskii, D. N. <i>Izv. AN BSSR. Ser.</i> <i>Khim. Nauk.</i> 1978 , 124–126.
77-Man/Sel	Mansson, M.; Sellers, P.; Stridh, G.; Sunner, S. J. Chem. Thermodyn. 1977, 9, 91–97.
76-Ben	Benson, S. W. <i>Thermochemical Kinetics</i> ; Wiley: New York, 1976
76-Kab/Rog	Kabo, G. J.; Roganov, G. N. Vestnik Belorus. Gos. Univ. Serija 2 1976, N3, 6-9.
75-Bra/And	Brazhnikov, M. M.; Andreevskii, A. I.; Satschek, A. I.; Peschenko, A. D. Zh. Prikl. Khim.(Leningrad) 1975 , 48, 2181–2185.
75-Mos/Dek	Mosselman, C.; Dekker, H. J. Chem. Soc., Faraday Trans. 1 1975, 71, 417-424.
75-Cab/Con	Cabani, S.; Conti, G.; Mollica, V.; Lepori, L. J. Chem. Soc., Faraday Trans. 1 1975 71 1943-1954
74-Sac/Pes	Sachek, A. I.; Peshchenko, A. D.; Andreevskii, D. N. Russ. J. Phys. Chem. (Engl. Transl.) 1974 , 48, 617.
73-Lin/Wic	Linek, J.; Wichterle, I. Collect. Czech. Chem. Commun. 1973 , 38, 1846–1852
73-Sac/Pes	Sachek, A. I.; Peshchenko, A. D.; Andreevskii, D. N. <i>Heats of Formation</i> of Some Secondary Pentanols and
	<i>Hexanols</i> ; Manuscript VINITI 21.12. 1973, No. 7668–7673.
73-Wil/Zwo	Wilhoit, R.C; Zwolinski B. J. J. Phys. Chem. Ref. Data 1973 , 2, Supplement No. 1
70-Connet	Connett, J. E. J. Chem. Soc. A 1970 , 1284–1286
69-Gun/Har	Gundry, H. A.; Harrop, D.; Head, A. J.; Lewis, G. B. J. Chem. Thermodyn. 1969 1, 321–322
66-Wadso	Wadso, I. Acta Chem. Scand. 1966 , 20, 536–544.
66-Gei/Fru	Geiseler, G.; Fruwert, J.; Huttig, R. Chem. Ber. 1966 , 99, 1594–1601.
63-Tho/Mea	Thomas, L. H.; Meatyard, R. J. Chem. Soc. 1963 , 1986–1995.
65-Cha/Ros	Chao, J.; Rossini, F. D. J. Chem. Eng. Data 1965 , 10, 374–379.
65-Dav/Kyb	Davies, M.; Kybett, B. Trans. Faraday Soc. 1965 , 61, 1608–1617.
63-McC/Lai	McCurdy, K. G.; Laidler, K. J. Can. J. Chem. 1963 , 41, 1867–1871.
61-Dyk/Sep	Dykyj, J.; Seprakova, M.; Paulech, J. Chem. Zvesti 1961 , 465–468.
60-Green	Green, J. H. S. Chem. Ind. (London) 1960 , 1215–1216.
60-Nich	Nicholson, G. R. J. Chem. Soc. 1960 , 2378–2379.
60-Tjeb	Tjebbes, J. Acta Chem. Scand. 1960 , 14, 180–188.
47-Stull	Stull, D. R. Ind. Eng. Chem. 1947, 39, 517–540.

Received for review December 10, 2004. Accepted May 6, 2005. JE049561M